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Classical and quantum chaos of the wedge billiard. I. Classical mechanics
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In this first of two papers on the classical-quantum correspondence of the wedge billiard, the
classical mechanics for wedge angles giving hard chaos is described. Attention is focused on the
periodic orbits of the system, all of which are known to be unstable. Each primitive periodic orbit
has been found to correspond uniquely to a sequence of two symbols, except for certain orbits of the
60° wedge that go directly into the vertex. However, not every binary sequence has a corresponding
periodic orbit. A total of 1048 primitive periodic orbits of the 49° wedge and 1920 primitive periodic
orbits of the 60° wedge have been found and their actions, Maslov indices, and stability exponents
determined. The primitive periodic orbits of word length n have been used to calculate the mean
action S(n), the mean Maslov index #(n), and the mean stability exponent @(n). To a good approx-
imation, each of these quantities increases linearly with n. It is also shown that there exist families
consisting of many or possibly an infinite number of primitive periodic orbits with nearly the same
action.
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I. INTRODUCTION

This is the first of two papers concerned with the clas-
sical and quantum behavior of a system which we call the
“wedge billiard” —a particle in a wedge acted on by a con-
stant force parallel to one side of the wedge. Of central
interest is the correspondence between the trajectories
of the classical particle and the energy eigenvalues and
eigenfunctions of the analogous quantum system. Among
the many questions that may be asked concerning this
correspondence, two are of particular interest. First of
all, is it possible to obtain a good approximation to the
eigenvalues and eigenfunctions of the quantum system
if one knows only the classical trajectories? Conversely,
what can the energy eigenvalues and eigenfunctions tell
one about the classical motion?

It will be shown in the following paper that for wedge
angles such that the classical motion is strongly chaotic
(in the sense that nearby trajectories diverge exponen-
tially for almost all initial conditions), partial answers
to both questions may be obtained using the well-known
periodic orbit theory developed by Gutzwiller [1-5] and
Balian and Bloch [6], including recent extensions involv-
ing dynamical ¢ functions [7-15]. In particular, a good
approximation to the energy eigenvalues of the quantum
system can be obtained by recasting the Gutzwiller trace
formula [4] as a ¢ product and finding the zeros of the
“functional determinant” [12-19], as will be described in
detail in the second paper.

An essential ingredient for these studies is detailed
knowledge of those special classical trajectories that close
on themselves—the periodic orbits of the system. The
present paper describes an extensive investigation of the
periodic orbits of the wedge billiard. Although moti-
vated by the classical-quantum correspondence and the
Gutzwiller trace formula, we have found many proper-
ties of these orbits that are of interest in their own right.
First, as described in Sec. III, each primitive periodic
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orbit is associated with a unique sequence of symbols
(and their cyclic permutations), but not every sequence
of symbols corresponds to a periodic orbit. This has im-
portant implications for the cycle expansions [10, 11] of
the dynamical ¢ function. We have also found that there
are infinite families of primitive periodic orbits having
very nearly the same action, as described in Sec. V. The
existence of such families means that pseudo-orbit ex-
pansions of the dynamical ¢ function [12, 16] cannot be
implemented in a straightforward manner. Furthermore,
since the accumulation point for each such family is not
“isolated,” it is questionable whether these families of
orbits can be treated by the stationary-phase approxi-
mation which underlies the Gutzwiller trace formula. Fi-
nally, in Sec. VI we consider some scaling properties of
the actions, Maslov indices, and stability exponents.

II. THE WEDGE BILLIARD

The wedge billiard consists of a particle confined to the
region between the y axis and the line y = z cot ¢ where
¢ is the wedge angle. The particle makes elastic collisions
with the sides of the wedge and is acted upon by a con-
stant force in the negative y direction. The Hamiltonian
is

1
H=2(pz+p,) +v,
The motion of a classical billiard in a symmetric wedge
has been studied by Lehtihet and Miller [20] and
by Richter, Scholz, and Wittek [21]. Furthermore,
Wojtkowski [22] has shown that the desymmetrized
wedge is related by a canonical transformation to the sys-
tem consisting of two balls in one dimension with gravity
studied by Whelan, Goodings, and Cannizzo [23].

One of the attractive features of the wedge billiard is
that for different values of the wedge angle ¢ it shows
different types of behavior. For 0° < ¢ < 45° the sys-

>0, y>zcotp. (1)
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tem exhibits Kolmogorov-Arnold-Moser (KAM) behav-
ior, that is, surfaces of section show islands of stability
(KAM tori) embedded in seas of chaos. For ¢ = 45°
the system is classically integrable and the Schrodinger
equation may be solved by separation of variables. For
45° < ¢ < 90° the system has been proven to exhibit
hard chaos, that is, there are no KAM tori in the phase
space and all trajectories are unstable [22,24]. Thus, it is
possible to study transitions between KAM behavior, in-
tegrable behavior, and hard chaos by varying the wedge
angle.

Since the potential of the wedge billiard is homoge-
neous [meaning that V(Az,\y) = AV(z,y)], it follows
[25] that if one is given a trajectory at some energy E’',
one can find the trajectory at some other energy E by
setting

o) = () <) pel) = (g)”p;m, @)

w0 = (5)ve) (0= (g)”pm, (3)

t= (%)Uzt’. (4)

We shall always work at E' = 1, knowing that the trajec-
tories at any other energy can be obtained by scaling the
coordinates, momenta, and time using these relations.

III. PERIODIC ORBITS

Nearly a century ago Poincaré [26] recognized the im-
portance of the periodic orbits of a classical system in
the context of chaotic motion. To find them in a sys-
tematic way, however, is not an easy task. One possi-
ble approach, described by Richter, Scholz, and Wittek
[21], is to determine systematically the intersections of
Birkhoff’s symmetry lines in a suitably chosen Poincaré
surface of section. However, this algorithm does not yield
periodic orbits with “broken symmetries,” which in the
case of the wedge billiard are known to exist. (They cor-
respond to periodic orbits which are not self-retracing.)

The approach we have used employs a symbolic de-
scription which provides a unique label for each periodic
orbit. Each periodic orbit consists of n symbols taken
from a two-letter alphabet [11] T and V, where n corre-
sponds to the number of reflections of the billiard from
the tilted wall of the wedge during one traversal of the
orbit. If the billiard strikes the vertical boundary of the
wedge between two successive reflections from the tilted
wall, the bounce is labeled by V. If it does not hit the
vertical wall between successive reflections from the tilted
wall, it is labeled by T. The sequence of symbols describ-
ing a periodic orbit will be called a word, and the number
of symbols in the sequence will be called the word length.
Clearly, cyclic permutations of the letters in a word corre-
spond to the same periodic orbit. Likewise, the reversed
sequence of letters, corresponding to traversing the peri-
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odic orbit in the opposite direction, will be considered to
belong to the same periodic orbit. Examples of periodic
orbits of the wedge billiard are shown in Fig. 1.

Those words which do not consist of repetitions of
shorter words correspond to primitive periodic orbits.
The symbol v will be used to label a primitive periodic
orbit. Multiple traversals of a given primitive periodic or-
bit will be taken into account explicitly in the Gutzwiller
trace formula and the dynamical ¢ functions in the fol-
lowing paper.

We have found, as a result of thousands of calculations,
that an arbitrary nonrepeating sequence of letters T and
V (and their cyclic permutations) either yields a unique
primitive periodic orbit or that no such orbit exists. In
the latter case, the word is said to be pruned by the
dynamics [11]. Our numerical method for finding the
orbits is based on a two-dimensional Newton-Raphson
iterative process, which is described in the Appendix. For
the 60° wedge we have found all the primitive periodic
orbits with word length < 15, plus many others having
longer word lengths. Similar calculations have also been
carried out for wedge angles of 46°, 49°, and 55°. It turns
out that the amount of pruning depends strongly on the
wedge angle.

For each primitive periodic orbit v one needs to know
five properties: the action S, the period T.,, the stability
exponent u., the sign of the trace of the monodromy
matrix o, and the Maslov index v,. The action and

period at energy E are given by
T,(B) = 222 ()

5,(B) = §p-da, s

Then from the scaling relations of Egs. (2)—(4) one finds
$,(B) = B*/25,(1), ()

8S,(E)

T,(E) = (3/2)EY/5,(1) = EYT,(1). (7)

Thus, once a primitive periodic orbit has been deter-

(a) (d) (g)
(b) (e) (h)
> 1+
0 L I(C)u
0 1
X
FIG. 1. Examples of primitive periodic orbits of the
60° wedge. (a) V; (b) TV; (c) TTV; (d) TVVV;

(e) TTVTV; (f) TTVVV; (g) TVVTV; (h) TVVVV; (i)
TTTVIVIVVTVTTVVV.,
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mined at unit energy, the action S, (1) can be calculated
by summing the contributions from all the parabolic arcs
making up the orbit, and, from Eq. (7), the period at unit
energy is given by T, (1) = (3/2)5,(1).

The stability index u., of a primitive periodic orbit
is calculated by a method similar to that described by
Gutzwiller [4]. This involves calculating the monodromy
matrix M., at some point on the primitive periodic orbit.
Knowing the analytical form of the T and V mappings,
we can calculate analytically the 3 x 3 monodromy ma-
trices for single T and V bounces, which are just the
Jacobean matrices of the mappings. Then, for a given
primitive periodic orbit, the 3 x 3 monodromy matrix
for one traversal of the orbit is obtained by multiplying
the corresponding sequence of single-bounce matrices to-
gether. Since, when the wedge angle ¢ is greater than
45°, all periodic orbits are unstable [20,22-24], the eigen-
values of M, are always real and their product is equal
to unity. One eigenvalue is always unity while the other
two are reciprocally related. Then the stability exponent
u~ is defined to be the natural logarithm of the magni-
tude of the largest eigenvalue of M.,. We have found this
method of calculating ., to be more accurate numeri-
cally than the one described by Gutzwiller [4] involving
a 2 X 2 monodromy matrix. It should be added that
u~, does not change under a rescaling of the energy, i.e.,
Uy (E) = uy(1).

In addition to u., the Gutzwiller trace formula and its
various reformulations require, in the case of hard chaos,
the sign of the trace of the monodromy matrix, which is
denoted by o,. When o, = +1, the mapping referred to
above is hyperbolic, whereas 0, = —1 corresponds to a
map that is hyperbolic with inversion.

In the case of a trajectory which goes precisely into
the wedge vertex, without colliding with either wall, the
calculation of u., is not straightforward. This is because
an initially connected piece of phase space (g2, dp2) sur-
rounding the trajectory as it enters the vertex becomes
broken into two pieces which separate macroscopically
after the collision with the vertex. Thus, the phase flow
bifurcates as a result of the vertex collision. If such a
trajectory were part of a primitive periodic orbit, the
stability exponent u., would be effectively infinite. Such
periodic orbits do not contribute to the Gutzwiller trace
formula and, therefore, can be omitted from further con-
sideration.

Although orbits that go directly into the wedge vertex
usually do not contribute to the trace formula and its
extensions, an exception occurs for the 60° wedge. It
was pointed out by Smilansky [27] that in this special
case, when the billiard goes into the wedge vertex at an
angle of 60° to the horizontal, it emerges from the vertex
at exactly the same angle, even when the billiard misses
the vertex by a small amount and makes a collision with
either the vertical (V) or the tilted (T) wall close to the
vertex. This interesting special case is illustrated in Fig.
2, which shows the primitive periodic orbits TVV for the
59° wedge and TTTV for the 61° wedge. In the limit
as ¢ — 60° from either above or below, both primitive
periodic orbits become the same, as shown in Fig. 2(c).
Note, however, that u., approaches the value 2.06 for the
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FIG. 2. (a) TVV for the 59° wedge; (b) TTTV for the

61° wedge; (c) the “vertex orbit” for the 60° wedge. This
primitive periodic orbit is approached by the two preceding
orbits when the wedge angle approaches 60°.

TVV orbit as ¢ — 60° from below, whereas it approaches
the value 2.29 for the TTTYV orbit as ¢ — 60° from above.

Other “vertex orbits” of the 60° wedge have been found
for which the phase space surrounding the trajectory does
not bifurcate following the collision with the vertex. Sev-
eral of these are shown in Fig. 3. In each case the trajec-
tories entering and leaving the vertex make equal angles
with the wedge bisector, a property that is easy to prove
analytically. Since each of the “vertex orbits” of the 60°
wedge is a limiting case approached from above and be-
low by primitive periodic orbits having different words, it
is not possible to label each one by a unique sequence of
T’s and V’s. This unusual situation means that cycle ex-
pansions and pseudo-orbit expansions (to be described in
the following paper) cannot be carried out in a straight-
forward manner.

Finally, an important feature of a primitive periodic or-

(a) (e)
1~

>
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X
FIG. 3. Four different “vertex orbits” of the 60° wedge.

Each is a limiting case corresponding to ¢ — 60° from above
and below.
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TABLE I. The primitive periodic orbits of the 60° wedge
having word length less than 8.
Word Sy _ Uy vy oy
\' 1.33333 0.69315 5 -1
TV 2.30940 1.31696 8 -1
TTV 2.91043 1.84725 11 -1
TVV 3.26592 2.06344 13 1
TTTV 3.26605 2.29243 14 -1
TVVV 4.81335 2.70228 18 -1
TTVTV 5.11682 3.17631 19 1
TTVVV 5.17881 3.23281 21 -1
TVTVV 5.72342 3.33168 21 -1
TVVVV 6.04658 3.42841 23 1
TTTVTV 5.33333 3.63689 22 1
TTTVVV 5.35747 3.67832 23 -1
TTVTVV 6.12133 3.86858 24 -1
TTVVVV 6.30282 3.99942 26 1
TVTVVV 7.15829 4.01700 26 1
TVVVVV 7.43158 4.09913 28 -1
TTTTVTV 5.44331 4.02503 25 1
TTTTVVV 5.45431 4.05543 26 -1
TTTVTTV 6.14577 4.14288 25 1
TTTVTIVV 6.31210 4.31946 27 -1
TTVTIVTV 7.45669 4.48526 27 -1
TTVTVVV 7.60035 4.55449 29 1
TTVVVVV 7.74065 4.64527 31 -1
TVTVTVV 7.99802 4.66284 29 1
TVTVVVV 8.43790 4.72135 31 -1
TVVTVVV 8.12000 4.74020 31 -1

TABLE II. The primitive periodic orbits of the 49° wedge
having word length less than 9.
Word Sy Uy vy o,
A\ 1.04323 0.48474 5 -1
TV 1.92931 0.94360 8 -1
TVV 2.59555 1.48123 13 1
TTVV 2.73807 1.96982 16 1
TVVV 3.91283 1.90729 18 -1
TTTVV 2.79379 2.39554 19 1
TVVVV 4.80835 2.42951 23 1
TTTTVV 2.82076 2.76202 22 1
TTVVVV 5.06856 2.89745 26 1
TVTVVV 5.86979 2.85203 26 1
TVVVVV 5.94909 2.88177 28 -1
TTTTTVV 2.83574 3.07970 25 1
TTTVVVV 5.19034 3.31098 29 1
TTVVTVV 5.35298 3.44742 29 1
TTVVVVV 6.33795 3.30081 31 -1
TVTVTVV 6.60327 3.33199 29 1
TVVTVVV 6.60732 3.34294 30 -1
TVVVVVV 6.93500 3.38853 33 1
TTTTTTVV 2.84489 3.35826 28 1
TTTTVVVV 5.25490 3.67028 32 1
TTTVVTVV 5.43049 3.86883 32 1
TTVVVVVV 7.24360 3.84261 36 1
TVTVTVVV 7.78708 3.79668 34 -1
TVVTVVVV 7.42104 3.90429 36 1
TVVVVVVV 8.01449 3.85663 38 -1

bit is its Maslov index [5], denoted by v,. In the next sec-
tion we describe how this was determined by the method
recently proposed by Creagh, Robbins, and Littlejohn
[28]. For future reference, Tables I and II give the calcu-
lated values of S, (1), u, vy, and o, for all the primitive
periodic orbits up to word length 6 for the 49° wedge and
the 60° wedge. [Recall from Eq. (7) that the period is

given by T, (1) = (3/2)S,(1).]

IV. CALCULATION OF THE MASLOV INDICES

In the Gutzwiller trace formula and the dynamical ¢
functions, the contribution from each primitive periodic
orbit « involves the phase factor exp(—ivym/2), where
v, is the Maslov index. In the original derivation of the
trace formula, Gutzwiller [4] introduced a coordinate sys-
tem in which ¢; is directed along the orbit and g2 is per-
pendicular to it at each point. (We shall specialize to
a system with two degrees of freedom.) Let us denote
an initial point on a primitive periodic orbit by (q¢}, p}),
with ¢4 = p) = 0 by definition. Now suppose that a
pencil of trajectories, having a range of momentum com-
ponents p, spread about p, = 0, starts out from this
point at t = 0. At a later time t the set of trajectories
will have, in general, a range of position coordinates gs.
A conjugate point is defined to occur whenever it happens
that, at some instant of time, 8¢2/9p, = 0. Each time
such a point is encountered in traversing a periodic orbit,
the Maslov index is increased by unity. In addition, the
Maslov index has a contribution determined by the sign

of

- 1 928 8%S 928
==3 19,/ 2 1 + nwa ] (8)
2 \ 0g¢,0¢), 0q50q;  0q40q3

which enters the second variation of S(q’,q”,E) away
from the periodic orbit. Here ¢4 is the g, coordinate
after one traversal of the orbit. Depending on whether =
is positive or negative one adds 0 or 1 to v,.

Figure 4 suggests a method of determining v, for a
given primitive periodic orbit that is in the spirit of
Gutzwiller’s original paper. In a manner similar to an il-
lustration given by Creagh, Robbins, and Littlejohn [28]
for a primitive periodic orbit of the stadium billiard, we
show in Fig. 4(a) and Fig. 4(b) that the number of conju-
gate points may be different for different starting points
on the orbit. Nevertheless, because the expression in (8)
has opposite signs at these two different starting points,
the final result for v, is the same.

Recently Creagh et al. proposed a different method for
calculating the Maslov index of a primitive periodic orbit.
Starting from an arbitrary point on the orbit, one fol-
lows the direction of the unstable manifold in the (g2, p2)
plane as it winds around the orbit during a single traver-
sal. (The direction of the unstable manifold at a given
time ¢ may be found by calculating the eigenvalues and
eigenvectors of the 2 x 2 monodromy matrix at time ¢.)
If 0 is the angle between one direction of the unstable
manifold and the ¢, axis, then as the orbit is traversed it
steadily decreases, corresponding to a clockwise rotation
of the unstable manifold in the (g2,p2) plane. In ad-
dition there occur discontinuous changes in € each time
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there is a collision with the boundary. (The jump in 6
is exactly +180° if the collision is at right angles to the
boundary.) For a system that does not have collisions
with hard boundaries (represented by an infinite poten-
tial jump), the method proposed by Creagh et al. is to
set v, equal to the number of times the chosen direction
of the unstable manifold crosses the py axis in the (g2,
p2) plane, either at § = 90° or at § = —90°. In addition,
vy is to be incremented by unity each time the parti-
cle velocity is zero. When there are hard-wall collisions,
as in billiard problems, v, must be further incremented
by 2 for each collision. In all the calculations reported
in this and the following paper, the Maslov indices were

' T
(a)
1 - —
>
O i ‘
0 1
b¢
.
(b)
1 — —]
N
r T
0 ! |
0 1
b 4
FIG. 4. Pencils of trajectories starting out from different

points on the primitive periodic orbit TTV of the 60° wedge
and followed through one traversal of the orbit. (a) The start-
ing point is low on the tilted wall. On the upward trajectory,
a focal point occurs just to the right of the maximum. After
being reflected from the tilted wall, a caustic occurs near the
maximum on the way back. For this starting point, = = —4.3.
(b) The starting point is high on the tilted wall. Now there
are two focal points and one caustic. The first focal point
occurs just to the left of the first maximum, the second well
to the left of the maximum near the end of the orbit. The
caustic occurs close to the maximum near the end of the or-
bit. In this case Z = 3.9. Note that all the trajectories in (a)
and (b) have been computed for the same length of time.
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calculated according to this prescription.

To illustrate the method, results of calculations of 8 as
a function of ¢ for the primitive periodic orbit TTV of the
60° wedge are shown in Fig. 5. Figures 5(a) and 5(b) cor-
respond to the two starting points of Figs. 4(a) and 4(b).
In both plots of § against ¢ there occur four discontinuous
jumps, corresponding to collisions with the wedge bound-
ary, and three “slow” crossings of § with the dashed lines
at 90° and —90°, leading to the value v, = 11. This
result is, of course, in agreement with the method based
on counting the number of conjugate points and the sign
of E, provided v, is likewise incremented by 2 for each
collision with the boundary.

FIG. 5. The angle 6 that the unstable manifold makes
with the p, axis as a function of the time ¢, followed through
one period of the primitive periodic orbit TTV of the 60°
wedge. Above the 6 plot, the z and y coordinates of the
trajectory are plotted as a function of ¢. (a) and (b) corre-
spond to the two different starting points in the preceding
figure. Note that each of the four collisions with the walls
produces a discontinuous jump in 6. Note also that after the
final collision with the tilted wall, 6 differs by 180° from its
initial value, indicating that the primitive periodic orbit TTV
is hyperbolic with reflection.
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V. FAMILIES OF PRIMITIVE PERIODIC
ORBITS

An interesting feature of the classical motion of the
wedge billiard is that there occur families containing
many or possibly an infinite number of primitive peri-
odic orbits having nearly the same action. The existence
of these families is evident from Fig. 6, which shows the
stability exponent u., plotted against the corresponding
action S, for many primitive periodic orbits of the 49°
wedge and the 60° wedge. Each vertical spike on these
plots corresponds to a family of primitive periodic orbits.
For each family the least upper bound of the actions is
called an accumulation point, which will be denoted by
Soo- Similar bounded families of primitive periodic orbits
have been found to occur in the anisotropic Kepler prob-
lem [18,19] and also as the “whispering gallery modes”
of the stadium billiard [29].

Typical families of primitive periodic orbits of the 49°
and 60° wedges are listed in Tables III-VI. For each fam-

10_IIT| llfT[[TlllllllL
- f -
6 .
~ B : ]
=3 i . 7]
4 — —
2~ (a) —
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—Il]l |ll||ll]TIIITTE
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8 | l : J
5 6r 7
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A ® 7
ol vl v
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FIG. 6. The stability exponents u, plotted against the

corresponding actions S,: (a) for 1048 primitive periodic or-
bits of the 49° wedge; (b) for 1920 primitive periodic orbits
of the 60° wedge. (Forward and backward directions count as
one orbit.)

TABLE III. The family of primitive periodic orbits
T™VVTTVYV of the 49° wedge.

m Sy Uy Uy oy
3 5.53595 4.36452 35 1
4 5.56836 4.72983 38 1
5 5.58756 5.04659 41 1
6 5.59976 5.32448 44 1
7 5.60795 5.57112 47 1
8 5.61370 5.79235 50 1
9 5.61787 5.99265 53 1
10 5.62100 6.17546 56 1
11 5.62340 6.34349 59 1
12 5.62529 6.49887 62 1
13 5.62679 6.64334 65 1
14 5.62800 6.77829 68 1
15 5.62900 6.90487 71 1
16 5.62983 7.02404 74 1
17 5.63053 7.13661 77 1
18 5.63112 7.24327 80 1
19 5.63163 7.34459 83 1
20 5.63207 7.44108 86 1
21 5.63245 7.53317 89 1
22 5.63278 7.62125 92 1
23 5.63307 7.70564 95 1
24 5.63332 7.78664 98 1
25 5.63355 7.86452 101 1
26 5.63375 7.93949 104 1
27 5.63394 8.01177 107 1
28 5.63410 8.08154 110 1
29 5.63425 8.14898 113 1

ily, the words, actions, stability exponents, and Maslov
indices of several primitive periodic orbits are given. For
certain families, including the T"VVTTVYV family of the
49° wedge and the T™VVV family of the 60° wedge, the
limiting value of the stability exponent has been found to
be infinite, as Tanner and Wintgen [18] found in the case
of one such family in the anisotropic Kepler problem.
One family of the 60° wedge consists of primitive pe-
riodic orbits of the form TTT---TVVV. Four members
of this family, which we shall denote as T™VVV, are

T4VVV TSVVV
- L
ITWVVV THYVY
0
0 1
X
FIG. 7. Four members of the family T™VVYV for the 60°
wedge.
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shown in Fig. 7. A typical primitive periodic orbit moves
down the tilted wall making several T bounces, enters the
velocity-reversing sequence VVV near the wedge vertex,
and then retraces its path of T bounces up the tilted wall.

TABLE IV. The family of primitive periodic orbits
T™VVYV of the 60° wedge.

m Sy Uy Uy Oy
1 4.81335 2.70228 18 -1
2 5.17881 3.23281 21 -1
3 5.35747 3.67832 23 -1
4 5.45431 4.05543 26 -1
5 5.51162 4.37939 29 -1
6 5.54799 4.66194 32 -1
7 5.57239 4.91174 35 -1
8 5.58949 5.13521 38 -1
9 5.60192 5.33715 41 -1
10 5.61123 5.52119 44 -1
11 5.61837 5.69017 47 -1
12 5.62396 5.84630 50 -1
13 5.62843 5.99136 53 -1
14 5.63204 6.12679 57 -1
15 5.63501 6.25377 59 -1
16 5.63748 6.37327 62 -1
17 5.63955 6.48612 65 -1
18 5.64131 6.59301 69 -1
19 5.64282 6.69454 72 -1
20 5.64411 6.79120 74 -1
21 5.64524 6.88344 7 -1
22 5.64622 6.97165 80 -1
23 5.64708 7.05616 83 -1
24 5.64785 7.13727 86 -1
25 5.64852 7.21523 89 -1
26 5.64913 7.29028 92 -1
27 5.64967 7.36264 95 -1
28 5.65015 7.43248 i 98 -1
29 5.65059 7.49997 101 -1
30 5.65099 7.56527 104 -1
31 5.65135 7.62851 107 -1
32 5.65167 7.68983 110 -1
33 5.65197 7.74932 113 -1
34 5.65225 7.80710 116 -1
35 5.65250 7.86326 119 -1
36 5.65273 7.91790 122 -1
37 5.65294 7.97108 124 -1
38 5.65314 8.02290 128 -1
39 5.65333 8.07340 130 -1
40 5.65350 8.12267 134 -1
41 5.65365 8.17075 136 -1
42 5.65380 8.21771 140 -1
43 5.65394 8.26359 143 -1
44 5.65406 8.30844 146 -1
45 5.65418 8.35232 149 -1
46 5.65430 8.39525 152 -1
47 5.65440 8.43728 155 -1
48 5.65450 8.47845 158 -1
49 5.65459 8.51879 161 -1
50 5.65468 8.55833 164 -1
55 5.65505 8.74512 179 -1
60 5.65534 8.91597 194 -1
65 5.65556 9.07337 209 -1
o) 5.65685 oo 0o -1

TABLE V. The family of primitive periodic orbits
TT™VVVTTTTVVYV of the 60° wedge.

m Sy Uy vy oy
6 11.00116 8.71800 60 1
7 11.02489 8.96820 63 1
8 11.04143 9.19200 66 1
9 11.05341 9.39421 69 1
10 11.06234 9.57847 72 1
11 11.06918 9.74763 75 1
12 11.07453 9.90390 78 1
13 11.07880 10.04909 81 1
14 11.08225 10.18462 84 1
15 11.08508 10.31168 87 1
16 11.08743 10.43126 90 1
17 11.08940 10.54417 93 1
18 11.09107 10.65111 96 1
19 11.09250 10.75268 99 1
20 11.09373 10.84938 102 1
21 11.09480 10.94166 105 1
22 11.09574 11.02990 108 1
23 11.09656 11.11444 111 1

As the number of T bounces tends to infinity, the action
approaches that of a path which starts at = = tandg,
y = 1, moves along the tilted wall to the vertex, rises
along the vertical wall to y = 1, and then retraces its
motion back to the starting point. For this limiting case,
the action is found to be 25/2 = 5.65685. This “limiting
orbit” is nonisolated in the following sense: given an arbi-
trary point on the orbit, any neighborhood of this point in
phase space will contain points belonging to other prim-
itive periodic orbits having nearly the same action. This
has important consequences for the Gutzwiller trace for-
mula which will be explored in the following paper.

It should be noted that families of primitive periodic

TABLE VI. The family of primitive periodic orbits
TT™VITVTTTTVTV of the 60° wedge.

m Sy Uy Vy Oy
6 10.98939 8.66910 56 1
7 11.01578 8.92246 59 1
8 11.03418 9.14849 62 1
9 11.04751 9.35233 65 1
10 11.05746 9.53782 68 1
11 11.06507 9.70792 71 1
12 11.07103 9.86493 74 1
13 11.07578 10.01071 77 1
14 11.07962 10.14672 80 1
15 11.08277 10.27418 83 1
16 11.08539 10.39408 86 1
17 11.08759 10.50727 89 1
18 11.08946 10.61445 92 1
19 11.09105 10.71622 95 1
20 11.09242 10.81309 98 1
21 11.09361 10.90552 101 1
22 11.09465 10.99389 104 1
23 11.09556 11.07854 107 1
24 11.09637 11.15977 110 1
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orbits, in which the actions approach a limiting value as
n increases, occur for all wedge angles. As another illus-
tration we show in Fig. 8 four primitive periodic orbits
of the family T VVTTVYV of the 49° wedge.

It is natural to ask whether there is an infinite number
of such infinite families at every wedge angle. Since we do
not know of a systematic way of generating such families
(for example, by adding T™ to a given word), we are
unable to answer this question.

The existence of infinite families of primitive periodic

orbits of the type we have been considering implies that
one cannot define a “topological entropy” for the wedge
billiard. In other systems that exhibit hard chaos the
number of primitive periodic orbits is known to grow ex-
ponentially with the length of the orbit or its action.
Numerical studies of the Hadamard-Gutzwiller model of
a particle moving freely on a surface of constant nega-
tive curvature [30] and of the hyperbola billiard [31] have
found excellent agreement with the asymptotic form,
exp(Tl)
V@) = 2T, (9)
where N(I) is the number of primitive periodic orbits
v having length I, < I, and 7 is called the topological
entropy. Since for these billiard systems, at constant
energy, the action of a primitive periodic orbit is just
Sy = pl,, where p is the constant magnitude of the
momentum, a relationship similar to that above can be
written for N(S), the number of primitive periodic or-
bits with actions S, < S. It is natural to ask whether
such a relation holds for the wedge billiard. The answer,
however, is clearly no because of the infinite families of
orbits described in this section. For the same reason,
a relationship of the form of Eq. (9) does not exist for
the anisotropic Kepler problem, as has been noted by
Gutzwiller [5].

Although the topological entropy does not exist for
the wedge billiard, it is possible to define, by analogy, a
word length entropy T,,. Let N(n) denote the number of
primitive periodic orbits having word length n. Then 7,
is defined by

T*VVTTVV TVVTTVV
1+
>
o T“’VVTT|VV TUVVTTVV
0 1
b 4

FIG. 8. Four members of the family T VVTTVYV for the
49° wedge.
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In[N(n)]

FIG. 9. The natural logarithm of the number of primi-
tive periodic orbits of word length n plotted against n for
different wedge angles. Medium-dashed line: unpruned dy-
namics, 7, = 0.554; solid line: 60° wedge, 7, = 0.510; dotted
line: 55° wedge, T, = 0.482; long-dashed line: 49° wedge,
Tw = 0.368; medium dashed-dot line: 46° wedge, 7, = 0.199;
long dashed-dot line: 45.5° wedge, 7, = 0.159.

N(n) s exp(Tyn). (10)
The number of physically existing primitive periodic or-
bits of word length n has been determined using the
method described in the Appendix as far as n = 15 or
higher, for each of the wedge angles 60°, 55°, 49°, 46°,
and 45.5°. The results are given in Fig. 9, which shows
that there is an approximate straight-line relationship at
each wedge angle, confirming the form of Eq. (10). The
straight line with the largest slope in Fig. 9 corresponds
to a nonexistent wedge such that every unique sequence
of T’s and V’s (after removing cyclic permutations, time-
reversed sequences, and repeated cycles) corresponds to
a primitive periodic orbit—in other words, there is no
pruning. By comparison, one sees that there is a signifi-
cant amount of pruning even for the 60° wedge, and the
amount of pruning increases rapidly as ¢ approaches 45°.

VI. SCALING PROPERTIES

With the pseudo-orbit expansions and the cycle ex-
pansions of the dynamical ¢ function very much in mind
(see the following paper), we examine in this section how
various properties of the primitive periodic orbits scale
with the word length n. In Fig. 10 the mean value of the
actions for primitive periodic orbits having word length
n, denoted S(n), is plotted against n. Plots are shown
for four different wedge angles. In each case S(n) in-
creases approximately linearly with n. It is also inter-
esting to study how the actions at a fixed value of n are
distributed about S(n). A histogram of the actions S,
for all the primitive periodic orbits of word length 15 for
the 60° wedge is shown in Fig. 11. The distribution is
approximately Gaussian. Similar distributions have been
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FIG. 10. The mean action S(n) of primitive periodic or- FIG. 12. The mean Maslov index (n) of primitive peri-

bits of word length n plotted against n for different wedge
angles. Solid curve: 60° wedge; dotted curve: 55° wedge;
dashed curve: 49° wedge; dot-dashed curve: 46° wedge.

found at other values of n for both the 49° wedge and
the 60° wedge [32]. Szeredi has also shown that, for a
given wedge angle, the normalized distributions are al-
most identical when plotted, for each n, in terms of the
dimensionless variable S, (n)/S(n).

Figure 12 shows the average Maslov index for the prim-
itive periodic orbits of word length n, denoted #(n), plot-
ted against n. Plots for different wedge angles are almost
indistinguishable on this plot. Here too one finds a linear
relation to a good approximation.

In Fig. 13 we show a plot of the mean stability ex-
ponent, 4(n), against n for four different wedge angles.
Again there is a remarkably good linear relation.

Closely related to the mean stability exponent is the
mean Lyapunov exponent 5\(1), for energy F = 1, defined
by

(11)

where T, (1) is the period of the primitive periodic orbit

T T T T T TT T T T T T T 1T
60 -
i 1
~ 40 - —
wn L 1
Z L 4
20 -
O i | | ﬂl 11 1 Aﬂﬂ nl 11 | 1 1 1
0 5 10 15 20
S
FIG. 11. Histogram of the actions of the primitive peri-

odic orbits with n = 15 for the 60° wedge.

odic orbits of word length n plotted against n for different
wedge angles. The curves are identified as in Fig. 10.

v, as in Eq. (7), and N is the number of primitive periodic
orbits in the sum over 7. Using 1819 primitive periodic
orbits of the 60° wedge (forward and backward directions
count as one orbit), we found A(1) = 0.417. This is to
be compared with the value A(1) = 0.425 determined for
a very long chaotic trajectory of the 60° wedge calcu-
lated from an arbitrary initial point of the £ = 1 phase
space. [The calculation was performed by following the
trajectory through many T and V mappings until the
largest eigenvalue of the 3 X 3 monodromy matrix had
grown larger than 10%. X(1) was then found by averag-
ing over the values obtained from many such segments.]
It is satisfying that the two values of A(1) are in close
agreement.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have focused our attention on the
primitive periodic orbits of the wedge billiard. It is often
stated that the primitive periodic orbits provide a frame-
work for the complete dynamics of a conservative dynam-
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n
FIG. 13. The mean stability exponent @(n) of primitive

periodic orbits of word length n plotted against n for different
wedge angles. The curves are identified as in Fig. 10.
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ical system. Figures 14 and 15 lend additional support
to this claim. Figure 14 shows the Poincaré surface of
section corresponding to the y and p, components of the
particle (with p, > 0) at the instant just after a collision
with the tilted wall. The 37903 points in the figure were
calculated from a single trajectory. The boundary enclos-
ing the points was determined by conservation of energy.
Figure 15 shows a similar plot containing the same num-
ber of points, but in this case the points were generated
by 1819 primitive periodic orbits of the 60° wedge. Some
of the pronounced lines and curves in this plot can be
interpreted as mappings of the symmetry lines described
by Richter, Scholz, and Wittek [21]. The streaks in the
lower part of the plot arise from some of the infinite fam-
ilies described in Sec. V. It is clear that the primitive
periodic orbits are distributed almost everywhere in the
allowed region. It is also noticeable that there are some
empty regions. However, these must eventually be filled
in by points from primitive periodic orbits of longer word
length, since the periodic orbits are densely distributed
among all possible trajectories in the phase space. The
ribbon devoid of points running beside the lower bound-
ary corresponds to orbits with many T bounces, but other
pointless regions are not so easy to interpret. Despite
these empty regions, it is fair to say that the motion of
the particle in the constant energy phase space is well
characterized by the primitive periodic orbits.

Our main findings may be briefly summarized. There
exists a symbolic dynamics, consisting of two symbols,
which uniquely describes each primitive periodic orbit
(except for the “vertex orbits” of the 60° wedge). The
search routine for primitive periodic orbits is firmly based
on knowing the sequence of T’s and V’s for a given or-
bit. We have found that many possible words do not
correspond to physical primitive periodic orbits, and the
amount of pruning increases as the wedge angle ap-
proaches 45°. An important feature of the wedge billiard
is the existence of families of primitive periodic orbits
having very nearly the same action, probably containing
an infinite number of members. Finally, we have found
that the mean values of the action, the Maslov index,

1.5

1

0.5
>
o5

0

-0.5

y
FIG. 14. Poincaré surface of section corresponding to the

y and p, components of the particle just after a collision with
the tilted wall. The 37903 points were generated by a single
trajectory of the 60° wedge.
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1.5

FIG. 15. Poincaré surface of section similar to that in Fig.
14 with 37903 points generated by 1819 primitive periodic
orbits of the 60° wedge.

and the stability exponent increase approximately lin-
early with the word length n. These results are important
for the study of the classical-quantum correspondence de-
scribed in the following paper.
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APPENDIX

In this appendix the method used to find the primitive
periodic orbit corresponding to a specified sequence of
T’s and V’s is outlined.

First, the individual T and V maps must be specified.
Following Lehtihet and Miller [20], we define the vari-
ables,

X = (tan@)ps + py, (A1)

Y = (COt ¢)pz: — Py> (AZ)

where p, and p, are the components of the momentum
of the particle just after a collision with the tilted wall.
Conservation of energy for F = 1 leads to the require-
ment that

%[cosz(d))X2 +5in?(¢)Y 2]+ rcosd = 1, (A3)
where we have put y = rcos¢. If X and Y are known,
this relation can be used to find r, which locates the
position of the collision with the tilted wall. From the
equations of motion of the particle it is a straightforward
matter to derive the T and V maps from an initial X,
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Y; to a final X, Yy. The map for the T bounce is

X; = X; +2Y;, Y; =Y, (A4)
while the V bounce is given by

X=—-Xi-Y,+7Yy, (A5)

Yp = —[4+26(X; + ) - Y2, (A6)

where £ = cos(2¢) cos? ¢.

To find the initial conditions for a primitive periodic
orbit corresponding to a specified sequence of T’s and
V’s, the appropriate maps are carried out going from
initial values X;, Y; to final values X¢, Yy. The condition
for a periodic orbit is that

X7(X3,Y) — X; =0, Y(X,,Y;)—-Y; =0.

Finding the zeros of the functions on the left side of these
equations was accomplished numerically using a two-
dimensional Newton-Raphson method [33]. The search
routine employed a 100 x 100 grid of starting values for
X, and Y;. While many starting values do not lead to
a solution, it was found that those that did always con-
verged to the same result. However, since it was possible
for one of the prescribed maps to carry the particle out-
side the wedge while still yielding a solution to Eq. (A7),
it was important to check the solution X;, Y; to see if it
gave a physical primitive periodic orbit. The final out-
come of the search procedure is that a given sequence
of T’s and V’s always led either to a unique primitive
periodic orbit or to none at all.
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